Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Drug Metab ; 24(12): 787-802, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38141188

RESUMEN

BACKGROUND: Cancer drug resistance remains a difficult barrier to effective treatment, necessitating a thorough understanding of its multi-layered mechanism. OBJECTIVE: This study aims to comprehensively explore the diverse mechanisms of cancer drug resistance, assess the evolution of resistance detection methods, and identify strategies for overcoming this challenge. The evolution of resistance detection methods and identification strategies for overcoming the challenge. METHODS: A comprehensive literature review was conducted to analyze intrinsic and acquired drug resistance mechanisms, including altered drug efflux, reduced uptake, inactivation, target mutations, signaling pathway changes, apoptotic defects, and cellular plasticity. The evolution of mutation detection techniques, encompassing clinical predictions, experimental approaches, and computational methods, was investigated. Strategies to enhance drug efficacy, modify pharmacokinetics, optimizoptimizee binding modes, and explore alternate protein folding states were examined. RESULTS: The study comprehensively overviews the intricate mechanisms contributing to cancer drug resistance. It outlines the progression of mutation detection methods and underscores the importance of interdisciplinary approaches. Strategies to overcome drug resistance challenges, such as modulating ATP-binding cassette transporters and developing multidrug resistance inhibitors, are discussed. The study underscores the critical need for continued research to enhance cancer treatment efficacy. CONCLUSION: This study provides valuable insights into the complexity of cancer drug resistance mechanisms, highlights evolving detection methods, and offers potential strategies to enhance treatment outcomes.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos , Transportadoras de Casetes de Unión a ATP/metabolismo , Neoplasias/metabolismo , Transporte Biológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo
2.
Curr Med Chem ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37921179

RESUMEN

Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.

3.
Curr Drug Deliv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670704

RESUMEN

Drug discovery and development (DDD) is a highly complex process that necessitates precise monitoring and extensive data analysis at each stage. Furthermore, the DDD process is both time-consuming and costly. To tackle these concerns, artificial intelligence (AI) technology can be used, which facilitates rapid and precise analysis of extensive datasets within a limited timeframe. The pathophysiology of cancer disease is complicated and requires extensive research for novel drug discovery and development. The first stage in the process of drug discovery and development involves identifying targets. Cell structure and molecular functioning are complex due to the vast number of molecules that function constantly, performing various roles. Furthermore, scientists are continually discovering novel cellular mechanisms and molecules, expanding the range of potential targets. Accurately identifying the correct target is a crucial step in the preparation of a treatment strategy. Various forms of AI, such as machine learning, neural-based learning, deep learning, and network-based learning, are currently being utilised in applications, online services, and databases. These technologies facilitate the identification and validation of targets, ultimately contributing to the success of projects. This review focuses on the different types and subcategories of AI databases utilised in the field of drug discovery and target identification for cancer.

4.
Front Pharmacol ; 14: 1218625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492081

RESUMEN

Objective: To propose a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery and increased bioavailability in treating Huntington's disease (HD). Methods: We conducted a literature review of the pathophysiology of HD and the limitations of currently available medications. We also reviewed the potential therapeutic benefits of engeletin, a flavanol glycoside, in treating HD through the Keap1/nrf2 pathway. We then proposed a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery across the blood-brain barrier (BBB) and increased bioavailability. Results: HD is an autosomal dominant neurological illness caused by a repetition of the cytosine-adenine-guanine trinucleotide, producing a mutant protein called Huntingtin, which degenerates the brain's motor and cognitive functions. Excitotoxicity, mitochondrial dysfunction, oxidative stress, elevated concentration of ROS and RNS, neuroinflammation, and protein aggregation significantly impact HD development. Current therapeutic medications can postpone HD symptoms but have long-term adverse effects when used regularly. Herbal medications such as engeletin have drawn attention due to their minimal side effects. Engeletin has been shown to reduce mitochondrial dysfunction and suppress inflammation through the Keap1/NRF2 pathway. However, its limited solubility and permeability hinder it from reaching the target site. A theoretical formulation of engeletin-nanostructured lipid nanocarriers may allow for free transit over the BBB due to offering a similar composition to the natural lipids present in the body a lipid solubility and increase bioavailability, potentially leading to a cure or prevention of HD. Conclusion: The theoretical formulation of engeletin-nanostructured lipid nanocarriers has the potential to improve delivery and increase the bioavailability of engeletin in the treatment of HD, which may lead to a cure or prevention of this fatal illness.

5.
Curr Neuropharmacol ; 21(7): 1558-1574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35950245

RESUMEN

Quercetin (Qu), a dietary flavonoid, is obtained from many fruits and vegetables such as coriander, broccoli, capers, asparagus, onion, figs, radish leaves, cranberry, walnuts, and citrus fruits. It has proven its role as a nutraceutical owing to numerous pharmacological effects against various diseases in preclinical studies. Despite these facts, Qu and its nanoparticles are less explored in clinical research as a nutraceutical. The present review covers various neuroprotective actions of Qu against various neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis. A literature search was conducted to systematically review the various mechanistic pathways through which Qu elicits its neuroprotective actions and the challenges associated with raw Qu that compromise therapeutic efficacy. The nanoformulations developed to enhance Qu's therapeutic efficacy are also covered. Various ongoing/completed clinical trials related to Qu in treating various diseases, including NDs, are also tabulated. Despite these many successes, the exploration of research on Qu-loaded nanoformulations is limited mostly to preclinical studies, probably due to poor drug loading and stability of the formulation, time-consuming steps involved in the formulation, and their poor scale-up capacity. Hence, future efforts are required in this area to reach Qu nanoformulations to the clinical level.


Asunto(s)
Nanopartículas , Enfermedades Neurodegenerativas , Humanos , Quercetina/uso terapéutico , Quercetina/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico
6.
Pharmaceutics ; 14(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36365203

RESUMEN

Present study deciphers development of oral polysaccharide-based colon targeted solid self-nanoemulsifying drug delivery system (S-SNEDDS) of xanthohumol (XH). Several studies have shown that XH has anti-inflammatory and antioxidant properties, suggesting that it could be a good candidate for the treatment of colorectal diseases (CRD). Despite its potential, XH has a low aqueous solubility. As a result, its bioavailability is constrained by the dissolution rate. The liquid (L)-SNEDDS was constituted using Labrafac PG as oil, Tween 80 as surfactant and Transcutol P as co-surfactant. The L-SNEDDS was then adsorbed onto the surface of guar gum and pectin and developed into S-SNEDDS powder. Ternary phase diagram was used to optimize the process of developing L-SNEDDS. The formulation showed mean droplet size of 118.96 ± 5.94 nm and zeta potential of -19.08 ± 0.95 mV and drug loading of 94.20 ± 4.71%. Dissolution studies carried out in medium containing rat caecal contents (RCC) represented the targeted release of S-SNEDDS powder. It was observed that S-SNEDDS showed less than 10% release XH in initial 5 h and rapid release occurred between the 5th and 10th hour. Results of cytotoxicity studies revealed good cytotoxicity of XH loaded S-SNEDDS for Caco2 cells as compared to raw-XH.

7.
Pharm Res ; 39(11): 2817-2829, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36195824

RESUMEN

PURPOSE: The aim of current study is to formulate, optimize and characterize the developed formulation of Mesalamine-Curcumin Nanostructured Lipid Carriers (Mes-Cur NLCs). METHODS: It was formulated using high pressure homogenization followed by probe sonication and formulation variables were optimized using Central Composite Design. The particle size (PS), zeta potential (ZP), entrapment efficiency (EE), drug release, cytotoxicity on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells and efficacy on RAW264.7 cells for optimized formulation was determined. RESULTS: The PS, ZP and EE were found to be 85.26 nm, -23.7 ± 7.45 mV, 99.2 ± 2.62 % (Mes) and 84 ± 1.51 % (Cur), respectively. The good correlation between predicted and obtained value indicated suitability and reproducibility of experimental design. NLCs showed spherical shape as confirmed by TEM. In vitro drug release profile of prepared formulation showed that Mes exhibited 100 % release at 48 h, whereas Cur exhibited 82.23 ± 2.97% release at 120 h. Both the drugs exhibited sustained release upon incorporation into the NLCs. The absence of any significant cell death during MTT assay performed on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells indicated that NLCs' were safe for use. Furthermore, significant reduction in nitric oxide level during anti-inflammatory evaluation of formulation on RAW264.7 cells showed excellent potential for the formulation to treat inflammation. The formulation was found stable as no significant difference between the PS, ZP and EE of the fresh and aged NLCs was observed. CONCLUSION: The outcomes of study deciphered successful formulation of Mes-Cur NLCs.


Asunto(s)
Curcumina , Nanoestructuras , Curcumina/farmacología , Portadores de Fármacos , Mesalamina , Lípidos , Reproducibilidad de los Resultados , Tamaño de la Partícula
8.
Chem Biol Interact ; 368: 110238, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306865

RESUMEN

Polysaccharides (PS) represent a broad class of polymer-based compounds that have been extensively researched as therapeutics and excipients for drug delivery. As pharmaceutical carriers, PS have mostly found their use as adsorbents, suspending agents, as well as cross-linking agents for various formulations such as liposomes, nanoparticles, nanoemulsions, nano lipid carriers, microspheres etc. This is due to inherent properties of PS such as porosity, steric stability and swellability, insolubility in pH. There have been emerging reports on the use of PS as therapeutic agent due to its anti-inflammatory and anti-oxidative properties for various diseases. In particular, for Crohn's disease, ulcerative colitis and inflammatory bowel disease. However, determining the dosage, treatment duration and effective technology transfer of these therapeutic moieties have not occurred. This is due to the fact that PS are still at a nascent stage of development to a full proof therapy for a particular disease. Recently, a combination of polysaccharide which act as a prebiotic and a probiotic have been used as a combination to treat various intestinal and colorectal (CRC) related diseases. This has proven to be beneficial, has shown good in vivo correlation and is well reported. The present review entails a detailed description on the role of PS used as a therapeutic agent and as a formulation pertaining to gastrointestinal diseases.


Asunto(s)
Colitis Ulcerosa , Polímeros , Humanos , Sistemas de Liberación de Medicamentos , Polisacáridos/uso terapéutico , Polisacáridos/química , Preparaciones Farmacéuticas , Portadores de Fármacos/química
9.
Biomed Res Int ; 2022: 1659338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832856

RESUMEN

Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Amputación Quirúrgica , Vendas Hidrocoloidales , Diabetes Mellitus/terapia , Pie Diabético/terapia , Humanos , Polímeros/uso terapéutico , Cicatrización de Heridas
10.
Chem Biol Interact ; 356: 109869, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35231453

RESUMEN

Fisetin (FS) is a bioactive flavonoid obtained mostly from apple and strawberry and classified under the category of food supplements due to numerous pharmacological effects against various diseases through multiple mechanistic pathways. It acts as excellent neuroprotective, cardioprotective, anti-invasive, anti-tumorigenic, anti-angiogenic, anticancer, antidiabetics, antioxidant, anti-inflammatory agent. Despite having excellent safety and efficacy profile, FS is very less explored to clinical research either as food supplement or, as therapeutic agent due to its poor aqueous solubility, low bioavailability and reduced blood brain barrier permeability. Multiple mechanistic pathways through which FS elicits its pharmacological actions and the challenges associated with FS that compromises therapeutic efficacy are described in this article. The nanoformulations developed to enhance the bioavailability and therapeutic efficacy of FS are also covered with detailed description of research works carried by various researchers. These include nanoemulsions, liposomes, ethosomes, glycerosomes, polymeric micelles, self-nanoemulsifying drug delivery system and polymeric nanoparticles. Various patents pertaining to extraction/isolation, formula composition and therapeutic uses of FS as well as some clinical studies conducted using FS as active moiety are also enlisted.


Asunto(s)
Flavonoles , Nanopartículas , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos
11.
J Ethnopharmacol ; 291: 115144, 2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35227783

RESUMEN

ETHANOPHARMACOLOGICAL IMPORTANCE: Alpinia galanga (L.) Willd (AG), belonging to Zingiberaceae family is used as a spice and condiment in various culinary preparations of Indonesia, Thailand and Malaysia. It has been also used as a key ingredient in various traditional systems of medicine for the treatment of throat infection, asthma, urinary ailments, inflammation and rheumatism amongst other conditions. AG is widely used as a functional food and included in various preparations to obtain its nutraceutical and pharmacological benefits of its phytoconstituents such as phenyl propanoids, flavonoids and terpenoids. Over the past decades, several researchers have carried out systematic investigation on various parts of AG. Numerous studies on AG rhizomes have shown positive pharmacological effects such as anti-inflammatory, anticancer, antipsoriasis, antiallergic, neuroprotective and thermogenesis. Till date, no comprehensive review summarizing the exploitation of AG into nanomedicine has been published. AIM OF THE REVIEW: This comprehensive review aims to briefly discuss cultivation methods, propagation techniques, extraction processes for AG. The ethnopharmacological uses and pharmacological activities of AG extracts and its isolates are discussed in detail which may contribute well in further development of novel drug delivery system (NDDS) i.e. future nanomedicine. MATERIALS AND METHODS: Information about AG was collected using search engine tools such as Google, Google Scholar, PubMed, Google Patent, Web of Science and bibliographic databases of previously published peer-reviewed review articles and research works were explored. The obtained data sets were sequentially arranged for better understanding of AG's potential. RESULTS: More advanced genetic engineering techniques have been utilized in cultivation and propagation of AG for obtaining better yield. Extraction, isolation and characterization techniques have reported numerous phytoconstituents which are chemically phenolic compounds (phenyl propanoids, flavonoids, chalcones, lignans) and terpenes. Ethnopharmacological uses and pharmacological activity of AG are explored in numerous ailments, their mechanism of action and its further potential to explore into novel drug delivery system are also highlighted. CONCLUSIONS: The review highlights the importance of plant tissue culture in increasing the production of AG plantlets and rhizomes. It was understood from the review that AG and its phytoconstituents possess numerous pharmacological activities and have been explored for the treatment of cancer, microbial infection, gastrointestinal disorders, neuroprotective effects, obesity and skin disorders. However, the use of AG as alternative medicine is limited owing to poor solubility of its bioactive components and their instability. To overcome these challenges, novel drug delivery systems (NDDS) have been utilized and found good success in overcoming its aforementioned challenges. Furthermore, efforts are required towards development of scalable, non-toxic and stable NDDS of AG and/or its bioactives.


Asunto(s)
Alpinia , Suplementos Dietéticos , Etnofarmacología/métodos , Medicina Tradicional/métodos , Nanomedicina , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Especias
12.
Infect Disord Drug Targets ; 22(2): e270921196808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34579638

RESUMEN

BACKGROUND: In the rural areas of sub-Saharan African regions, skin diseases are so common. Due to which the population of the sub-Saharan region suffers from different types of skin disorders. In these regions, many treatment options are not available for the treatment of skin disease. AIM: The current study aims to discuss various skin diseases and their treatment strategies, specifically in sub-Saharan African regions. METHODS: Extensive literature survey was carried out by using Scopus, Science Direct, Elsevier, Google scholar and Bentham science databases. RESULTS AND DISCUSSION: It was demonstrated from the literature surveys that different effective techniques are used in the management of skin disease. In the result, it was shown that the condition of the disease is at a dangerous level which must be controlled. CONCLUSION: It is concluded from the manuscript that the skin disorder in the sub-Saharan region is at a very dangerous level. The research must be done to develop a better understanding of the disease and its treatment.


Asunto(s)
Enfermedades de la Piel , África del Sur del Sahara/epidemiología , Humanos , Enfermedades de la Piel/epidemiología , Enfermedades de la Piel/terapia
13.
Mini Rev Med Chem ; 22(5): 701-728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34544334

RESUMEN

Dihydropyrimidine derivatives are the most important scaffolds due to structural similarities with natural products; it is a heterocyclic compound. The chemistry of Dihydropyrimidine is a growing field. Various reaction schemes for the preparation of Dihydropyrimidines produce different biological effects and offer vast scope in the field of medicinal chemistry. This article's goal is to analyze the work that reported the recent chemistry and pharmacological activities of dihydropyrimidine derivatives.


Asunto(s)
Productos Biológicos , Química Farmacéutica , Productos Biológicos/farmacología
14.
Polymers (Basel) ; 13(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641162

RESUMEN

The purpose of the present study was to develop emulsions encapsulated by chitosan on the outer surface of a nano droplet containing 5-fluorouracil (5-FU) as a model drug. The emulsions were characterized in terms of size, pH and viscosity and were evaluated for their physicochemical properties such as drug release and skin permeation in vitro. The emulsions containing tween 80 (T80), sodium lauryl sulfate, span 20, and a combination of polyethylene glycol (PEG) and T20 exhibited a release of 88%, 86%, 90% and 92%, respectively. Chitosan-modified emulsions considerably controlled the release of 5-FU compared to a 5-FU solution (p < 0.05). All the formulations enabled transportation of 5-FU through a rat's skin. The combination (T80, PEG) formulation showed a good penetration profile. Different surfactants showed variable degrees of skin drug retention. The ATR-FTIR spectrograms revealed that the emulsions mainly affected the fluidization of lipids and proteins of the stratum corneum (SC) that lead to enhanced drug permeation and retention across the skin. The present study concludes that the emulsions containing a combination of surfactants (Tween) and a co-surfactant (PEG) exhibited the best penetration profile, prevented the premature release of drugs from the nano droplet, enhanced the permeation and the retention of the drug across the skin and had great potential for transdermal drug delivery. Therefore, chitosan-coated 5-FU emulsions represent an excellent possibility to deliver a model drug as a transdermal delivery system.

15.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34685005

RESUMEN

A selected active pharmaceutical ingredient must be incorporated into a cargo carrier in a particular manner so that it achieves its goal. An amalgamation of active pharmaceutical ingredients (APIs) should be conducted in such a manner that it is simple, professional, and more beneficial. Lipids/polymers that are known to be used in nanocarriers for APIs can be transformed into a vesicular formulation, which offers elegant solutions to many problems. Phospholipids with other ingredients, such as ethanol and water, form suitable vesicular carriers for many drugs, overcoming many problems related to poor bioavailability, poor solubility, etc. Ultraflexible liposomes are novel carriers and new frontiers of drug delivery for transdermal systems. Auxiliary advances in vesicular carrier research have been made, enabling polymer-coated ethanolic liposomes to avoid detection by the body's immune system-specifically, the cells of the reticuloendothelial system. Ultraflexible liposomes act as a cargo system and a nanotherapeutic approach for the transport of therapeutic drugs and bioactive agents. Various applications of liposome derivatives in different diseases are emphasized in this review.

16.
Polymers (Basel) ; 13(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34577925

RESUMEN

Polymers from natural sources are widely used as excipients in the formulation of pharmaceutical dosage forms. The objective of this study was to extract and further characterize the tamarind gum polysaccharide (TGP) obtained from Tamarindus indica as an excipient for biomedical applications. Double distilled water was used as a solvent for the extraction of gum while Ethyl alcohol was used as an antisolvent for the precipitation. The results of the Hausner ratio, Carr's index and angle of repose were found to be 0.94, 6.25, and 0.14, respectively, which revealed that the powder is free-flowing with good flowability. The gum was investigated for purity by carrying out chemical tests for different phytochemical constituents and only carbohydrates were found to be present. The swelling index was found to be 87 ± 1%, which shows that TGP has good water intake capacity. The pH of the 1% gum solution was found to be neutral, approximately 6.70 ± 0.01. The ash values such as total ash, sulphated ash, acid insoluble ash, and water-soluble ash were found to be 14.00 ± 1.00%, 13.00 ± 0.05%, 14.04 ± 0.57% and 7.29 ± 0.06%, respectively. The IR spectra confirmed the presence of alcohol, amines, ketones, anhydrides groups. The contact angle was <90°, indicating favorable wetting and good spreading of liquid over the surface The scanning electron micrograph (SEM) revealed that the particle is spherical in shape and irregular. DSC analysis shows a sharp exothermic peak at 350 °C that shows its crystalline nature. The results of the evaluated properties showed that TGP has acceptable properties and can be used as a excipient to formulate dosage forms for biomedical applications.

17.
Int J Nanomedicine ; 16: 2533-2553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33824590

RESUMEN

PURPOSE: The present study was intended to fabricate chitosan (Ch)-tamarind gum polysaccharide (TGP) polyelectrolyte complex stabilized cubic nanoparticles of simvastatin and evaluate their potential against human breast cancer cell lines. MATERIALS AND METHODS: The antisolvent precipitation method was used for formulation of nanoparticles. Factorial design (32) was utilized as a tool to analyze the effect of Ch and TGP concentration on particle size and entrapment efficiency of nanoparticles. RESULTS: Formulated nanoparticles showed high entrapment efficiency (67.19±0.42-83.36±0.23%) and small size (53.3-383.1 nm). The present investigation involved utilization of two biological membranes (egg and tomato) as biological barriers for drug release. The study revealed that drug release from tomato membranes was retarded (as compared to egg membranes) but the release pattern matched that of egg membranes. All formulations followed the Baker-Lansdale model of drug release irrespective of the two different biological barriers. Stability studies were carried out for 45 days and exhibited less variation in particle size as well as a reduction in entrapment efficiency. Simvastatin loaded PEC stabilized nanoparticles exhibited better control on growth of human breast cancer cell lines than simple simvastatin. An unusual anticancer effect of simvastatin nanoparticles is also supported by several other research studies. CONCLUSION: The present study involves first-time synthesis of Ch-TGP polyelectrolyte complex stabilized nanoparticles of simvastatin against MCF-7 cells. It recommends that, in future, theoretical modeling and IVIVC should be carried out for perfect designing of delivery systems.


Asunto(s)
Quitosano/química , Nanopartículas/química , Gomas de Plantas/química , Polielectrolitos/química , Polisacáridos/química , Simvastatina/farmacología , Tamarindus/química , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Células MCF-7 , Nanopartículas/ultraestructura , Tamaño de la Partícula , Espectrofotometría Infrarroja , Electricidad Estática
18.
Polymers (Basel) ; 13(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670569

RESUMEN

The rheological properties of tamarind seed polymer are characterized for its possible commercialization in the food and pharmaceutical industry. Seed polymer was extracted using water as a solvent and ethyl alcohol as a precipitating agent. The temperature's effect on the rheological behavior of the polymeric solution was studied. In addition to this, the temperature coefficient, viscosity, surface tension, activation energy, Gibbs free energy, Reynolds number, and entropy of fusion were calculated by using the Arrhenius, Gibbs-Helmholtz, Frenkel-Eyring, and Eotvos equations, respectively. The activation energy of the gum was found to be 20.46 ± 1.06 kJ/mol. Changes in entropy and enthalpy were found to be 23.66 ± 0.97 and -0.10 ± 0.01 kJ/mol, respectively. The calculated amount of entropy of fusion was found to be 0.88 kJ/mol. A considerable decrease in apparent viscosity and surface tension was produced when the temperature was raised. The present study concludes that the tamarind seed polymer solution is less sensitive to temperature change in comparison to Albzia lebbac gum, Ficus glumosa gum and A. marcocarpa gum. This study also concludes that the attainment of the transition state of viscous flow for tamarind seed gum is accompanied by bond breaking. The excellent physicochemical properties of tamarind seed polymers make them promising excipients for future drug formulation and make their application in the food and cosmetics industry possible.

19.
Curr Neuropharmacol ; 19(7): 957-989, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33167841

RESUMEN

Huntington's disease (HD) is an autosomal fatal genetic disease in which degeneration of neuronal cells occurs in the central nervous system (CNS). Commonly used therapeutics are cludemonoamine depletors, antipsychotics, antidepressants, and tranquilizers. However, these drugs cannot prevent the psychotic, cognitive, and behavioral dysfunctions associated with HD. In addition to this, their chronic use is limited by their long-term side effects. Herbal drugs offer a plausible alternative to this and have shown substantial therapeutic effects against HD. Moreover, their safety profile is better in terms of side effects. However, due to limited drug solubility and permeability to reach the target site, herbal drugs have not been able to reach the stage of clinical exploration. In recent years, the paradigm of research has been shifted towards the development of herbal drugs based nanoformulations that can enhance their bioavailability and blood-brain barrier permeability. The present review covers the pathophysiology of HD, available biomarkers, phytomedicines explored against HD, ongoing clinical trials on herbal drugs exclusively for treating HD and their nanocarriers, along with their potential neuroprotective effects.


Asunto(s)
Enfermedad de Huntington , Fármacos Neuroprotectores , Preparaciones Farmacéuticas , Barrera Hematoencefálica , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Neuronas , Fármacos Neuroprotectores/uso terapéutico
20.
Curr Pharm Des ; 26(42): 5468-5487, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32851955

RESUMEN

Flavonoids are secondary metabolites that are widely distributed in plants. These phenolic compounds are classified into various subgroups based on their structures: flavones, flavonols, isoflavones, flavanones, and anthocyanins. They are known to perform various pharmacological actions like antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic and antiallergic, etc. Diabetes is a chronic progressive metabolic disorder that affects several biochemical pathways and leads to secondary complications such as neuropathy, retinopathy, nephropathy, and cardiomyopathy. Among them, the management of diabetic neuropathy is one of the major challenges for physicians as well as the pharmaceutical industries. Naturally occurring flavonoids are extensively used for the treatment of diabetes and its related complications due to their antioxidant properties. Moreover, flavonoids inhibit various pathways that are involved in the progression of diabetic neuropathy like the reduction of oxidative stress, decrease in glycogenolysis, increase glucose utilization, decrease in the formation of advanced glycation end products, and inhibition of the α-glucosidase enzyme. This review entails current updates on the therapeutic perspectives of flavonoids in the treatment of neuropathic pain. This manuscript explains the pathological aspects of neuropathic pain, the chemistry of flavonoids, and their application in amelioration of neuropathic pain through preclinical studies either alone or in combination with other therapeutic agents.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Antioxidantes/farmacología , Neuropatías Diabéticas/tratamiento farmacológico , Flavonoides/farmacología , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...